User:Huhhila
Jump to navigation
Jump to search
Special:Whatlinkshere/User:Huhhila
Lorem ipsum.
Random patches
Slats [fixed]
From 608fd6fad26ccf1b2515bfb897cdee63e72ceae5 Mon Sep 17 00:00:00 2001
From: Huhhila <huhhila@example.org>
Date: Sun, 12 Jan 2025 10:02:52 +0200
Subject: [PATCH] Fix transparency.
---
api.lua | 1 +
1 file changed, 1 insertion(+)
diff --git a/api.lua b/api.lua
index 65e19bd..a41c8b2 100644
--- a/api.lua
+++ b/api.lua
@@ -57,6 +57,7 @@ function slats.register(subname, opts)
paramtype2 = "wallmounted",
is_ground_content = false,
sunlight_propagates = true,
+ use_texture_alpha = "clip",
groups = opts.groups,
sounds = opts.sounds,
node_box = {
--
2.43.0
H4sIAF13g2cEA0VQXWvcMBB8Pv2KJU8JPru2crYvpi1XWo5QKBQub6GYtby2VXSy0Ad1aH985DvS gFh2dzQzu3u08xmqfD/01YA9r4QYio6XRdkN3f6hFj1RdU81F4RUwo9Zw4kMFDXkeXN5wPO8YMco 08BjmCapED5O1+RAC56Nomy242f2DT01cAp6CwWH76gjlZdQRCHelBySPEqxU+h+k/ANPP/88vT1 8Rcc5QLeonYGLWnxkjGWpikDNDJTAeEfFJCwGAapCMSEeqQ+WoDUjqyXs75N7hjr5TBAmo7SA354 43ZvGZO6pwWqkoqHrs8y3BVi3/E4XF7tdqvhO4slSQLvzMMB0rLeVpDEWEMsh6DF6gtOoXeZpVE6 T/bWhU7jmbYwG+/uGGw2cSU8+xdDHD7BzR9U6jwH7am/2a6wdO1oY6NvxRy72sdfAypHF9QFreQ4 +dbY2eAYr+si7m2IcLLZBEetp8UHSy0qM+FqIZQ0V+1V2KyEdZjsWl1lV8P/gLtUF0DPPbXdvETO 33gRYDzb3Wc5Y69xYKfLRAIAAA== |
Banners
From 9fbb01faaedc37490da356af1eb3c77d926d3fac Mon Sep 17 00:00:00 2001
From: Huhhila <huhhila@example.org>
Date: Mon, 21 Jul 2025 21:47:05 +0300
Subject: [PATCH] Recalculate normals.
Method used:
- Open extra/banner.blend in Blender
- tab
- A
- shift-N
- export
- save as for the .blend as well.
By default this results in solid top besides the other normals of the pole getting fixed, is that wanted?
Pseudonymized patch, just for the usual ${reasons}. Also like first time I ever used Blender (for a specific goal).
---
models/banner_pole.obj | 114 ++++++++++++++++++++---------------------
1 file changed, 57 insertions(+), 57 deletions(-)
diff --git a/models/banner_pole.obj b/models/banner_pole.obj
index a46771d..39fc5a8 100644
--- a/models/banner_pole.obj
+++ b/models/banner_pole.obj
@@ -94,12 +94,12 @@ v -1.285142 31.074223 0.323846
v -1.285142 41.649487 0.323846
v 0.038031 31.074223 0.071638
v 0.038031 41.649483 0.071638
-vn 1.0000 -0.0000 -0.0000
-vn -0.0000 -0.0000 -1.0000
vn -1.0000 -0.0000 -0.0000
vn -0.0000 -0.0000 1.0000
-vn -0.0000 1.0000 -0.0000
+vn 1.0000 -0.0000 -0.0000
+vn -0.0000 -0.0000 -1.0000
vn -0.0000 -1.0000 -0.0000
+vn -0.0000 1.0000 -0.0000
vn -0.4962 -0.0000 -0.8682
vn -0.4958 -0.0000 -0.8684
vn -0.3672 -0.0000 -0.9301
@@ -143,21 +143,21 @@ vn 0.1872 -0.0000 0.9823
vn -1.0000 -0.0000 -0.0059
vn 1.0000 -0.0000 0.0059
vt 0.502372 0.344045
-vt 0.502372 0.325948
-vt 0.993251 0.325948
vt 0.993251 0.344045
+vt 0.993251 0.325948
+vt 0.502372 0.325948
vt 0.997751 0.312205
-vt 0.997751 0.325777
-vt 0.506885 0.325779
vt 0.506885 0.312205
+vt 0.506885 0.325779
+vt 0.997751 0.325777
vt 0.488799 0.325948
-vt 0.488799 0.344045
-vt -0.002080 0.344045
vt -0.002080 0.325948
+vt -0.002080 0.344045
+vt 0.488799 0.344045
vt -0.002080 0.325779
-vt -0.002080 0.312207
-vt 0.488786 0.312205
vt 0.488786 0.325779
+vt 0.488786 0.312205
+vt -0.002080 0.312207
vt 0.943902 0.997273
vt 0.908697 0.997273
vt 0.908696 0.497389
@@ -335,12 +335,12 @@ vt 0.580417 0.180707
vt 0.710152 0.199879
vt 0.710202 0.201063
s 0
-f 2/1/1 4/2/1 3/3/1 1/4/1
-f 4/5/2 8/6/2 7/7/2 3/8/2
-f 8/9/3 6/10/3 5/11/3 7/12/3
-f 6/13/4 2/14/4 1/15/4 5/16/4
-f 1/15/5 3/8/5 7/7/5 5/16/5
-f 6/10/6 8/9/6 4/2/6 2/1/6
+f 2/1/1 1/2/1 3/3/1 4/4/1
+f 4/5/2 3/6/2 7/7/2 8/8/2
+f 8/9/3 7/10/3 5/11/3 6/12/3
+f 6/13/4 5/14/4 1/15/4 2/16/4
+f 1/15/5 5/14/5 7/7/5 3/6/5
+f 6/12/6 2/1/6 4/4/6 8/9/6
f 12/17/7 14/18/7 13/19/7 11/20/7
f 12/17/8 11/20/8 9/21/8 10/22/8
f 14/18/9 16/23/9 15/24/9 13/19/9
@@ -382,44 +382,44 @@ f 88/95/44 87/96/44 89/97/44 90/98/44
f 86/94/45 85/93/45 87/96/45 88/95/45
f 90/98/46 89/97/46 91/99/46 92/100/46
f 10/101/47 9/102/47 51/103/47 52/104/47
-f 28/105/5 26/106/5 68/107/5 70/108/5
-f 46/109/5 44/110/5 86/111/5 88/112/5
-f 17/113/6 19/114/6 61/115/6 59/116/6
-f 35/117/6 37/118/6 79/119/6 77/120/6
-f 20/121/5 18/122/5 60/123/5 62/124/5
-f 38/125/5 36/126/5 78/127/5 80/128/5
-f 12/129/5 10/130/5 52/131/5 54/132/5
-f 30/133/5 28/105/5 70/108/5 72/134/5
-f 45/135/6 47/136/6 89/137/6 87/138/6
-f 9/139/6 11/140/6 53/141/6 51/142/6
-f 27/143/6 29/144/6 71/145/6 69/146/6
-f 48/147/5 46/109/5 88/112/5 90/148/5
-f 19/114/6 21/149/6 63/150/6 61/115/6
-f 37/118/6 39/151/6 81/152/6 79/119/6
+f 28/105/6 26/106/6 68/107/6 70/108/6
+f 46/109/6 44/110/6 86/111/6 88/112/6
+f 17/113/5 19/114/5 61/115/5 59/116/5
+f 35/117/5 37/118/5 79/119/5 77/120/5
+f 20/121/6 18/122/6 60/123/6 62/124/6
+f 38/125/6 36/126/6 78/127/6 80/128/6
+f 12/129/6 10/130/6 52/131/6 54/132/6
+f 30/133/6 28/105/6 70/108/6 72/134/6
+f 45/135/5 47/136/5 89/137/5 87/138/5
+f 9/139/5 11/140/5 53/141/5 51/142/5
+f 27/143/5 29/144/5 71/145/5 69/146/5
+f 48/147/6 46/109/6 88/112/6 90/148/6
+f 19/114/5 21/149/5 63/150/5 61/115/5
+f 37/118/5 39/151/5 81/152/5 79/119/5
f 49/153/48 50/154/48 92/155/48 91/156/48
-f 22/157/5 20/121/5 62/124/5 64/158/5
-f 40/159/5 38/125/5 80/128/5 82/160/5
-f 11/140/6 13/161/6 55/162/6 53/141/6
-f 29/144/6 31/163/6 73/164/6 71/145/6
-f 47/136/6 49/165/6 91/166/6 89/137/6
-f 14/167/5 12/129/5 54/132/5 56/168/5
-f 32/169/5 30/133/5 72/134/5 74/170/5
-f 50/171/5 48/147/5 90/148/5 92/172/5
-f 21/149/6 23/173/6 65/174/6 63/150/6
-f 39/151/6 41/175/6 83/176/6 81/152/6
-f 24/177/5 22/157/5 64/158/5 66/178/5
-f 42/179/5 40/159/5 82/160/5 84/180/5
-f 13/161/6 15/181/6 57/182/6 55/162/6
-f 31/163/6 33/183/6 75/184/6 73/164/6
-f 16/185/5 14/167/5 56/168/5 58/186/5
-f 34/187/5 32/169/5 74/170/5 76/188/5
-f 23/173/6 25/189/6 67/190/6 65/174/6
-f 41/175/6 43/191/6 85/192/6 83/176/6
-f 26/106/5 24/177/5 66/178/5 68/107/5
-f 44/110/5 42/179/5 84/180/5 86/111/5
-f 15/181/6 17/113/6 59/116/6 57/182/6
-f 33/183/6 35/117/6 77/120/6 75/184/6
-f 18/122/5 16/185/5 58/186/5 60/123/5
-f 36/126/5 34/187/5 76/188/5 78/127/5
-f 25/189/6 27/143/6 69/146/6 67/190/6
-f 43/191/6 45/135/6 87/138/6 85/192/6
+f 22/157/6 20/121/6 62/124/6 64/158/6
+f 40/159/6 38/125/6 80/128/6 82/160/6
+f 11/140/5 13/161/5 55/162/5 53/141/5
+f 29/144/5 31/163/5 73/164/5 71/145/5
+f 47/136/5 49/165/5 91/166/5 89/137/5
+f 14/167/6 12/129/6 54/132/6 56/168/6
+f 32/169/6 30/133/6 72/134/6 74/170/6
+f 50/171/6 48/147/6 90/148/6 92/172/6
+f 21/149/5 23/173/5 65/174/5 63/150/5
+f 39/151/5 41/175/5 83/176/5 81/152/5
+f 24/177/6 22/157/6 64/158/6 66/178/6
+f 42/179/6 40/159/6 82/160/6 84/180/6
+f 13/161/5 15/181/5 57/182/5 55/162/5
+f 31/163/5 33/183/5 75/184/5 73/164/5
+f 16/185/6 14/167/6 56/168/6 58/186/6
+f 34/187/6 32/169/6 74/170/6 76/188/6
+f 23/173/5 25/189/5 67/190/5 65/174/5
+f 41/175/5 43/191/5 85/192/5 83/176/5
+f 26/106/6 24/177/6 66/178/6 68/107/6
+f 44/110/6 42/179/6 84/180/6 86/111/6
+f 15/181/5 17/113/5 59/116/5 57/182/5
+f 33/183/5 35/117/5 77/120/5 75/184/5
+f 18/122/6 16/185/6 58/186/6 60/123/6
+f 36/126/6 34/187/6 76/188/6 78/127/6
+f 25/189/5 27/143/5 69/146/5 67/190/5
+f 43/191/5 45/135/5 87/138/5 85/192/5
--
2.50.1
XQAAgAD//////////wAjHInm9t8yfnX+Z0sAUgMBXE5fytCPtfXMlJAHG7iGGy9/eMLprkvLJkfz kskEeQhzSy0wUKMQE+0BNFKV72DIZOy6ac834/3rAdvk5b9NkZvRtoNmpbz/6O2qbhY1SJLl+2Du 9vxxF2hENQS2N5jB4uIx5SMG3JlnNDW/r1vMIExwctBMfEVT2AC3rsNUfkwgHcBCt4EmKHdpSEjU rr+6T8araQiD6gdbpbhlgoepw1+jYvWWHF2pVLxivUhoZIS5O/6HhHsCetT+iF32ZB30euh1lYzq X8yC2UgwXLrIbLw/fmR6ysts8tFvnXcHzvLS5rqzDA3XBAHDuOS4AZkAwWoPrWTgEh4fQy9XfvC2 Kf1ppEo+7P7R565NGwttJhjqY6K0NLpiVtxRYaT0ayLrhtd5WTB38HSm1WZ4j/QPF7pCWL9Q57ju dqFHiBZK0f3c8Ifzis9mUYRDOWNyFo0eeYzBPIKtwVqFs1oCEmAN7UP7pZGhO3MhRsqCfcBAGpHR 0s96hY7yAIBZOgo4Wy0Jh/pDE9DIeP9PXvNVQz0/Zi9Uh1jG80i4aKzEMM6IRTzNkTqj3BX9JQSz 3vlkMWv7OWjdHP8az0qDTFQx4Yzwiv/aB0CXt3YTAGyBfVnKFzSRFg8FgTFL5fC+1gng3kVGD1bp NKYCY6mBmAXmdxIukfjborkJTcfQvno/HGnMylRoDG63kBNWxBXUlRCl73/iW08BG8RduDdYM0oS UcKpvU/AJrQ5k7n4jnkB4vDznMkz7NzV8HMFHp56WJJcZlTRJQyLF65vdS6uZHS3Brwx55Wz3Jgo +p03+w5tFpA/S1ZbgLZKEchGE4gtkn+dKVlKyVeHZKo6hz6tMRIsCe+w+0obC7QO6Z30K0I6BV1M i9i1CQlGoIqIbvqquZgLGVVawvDTO34uI468kM+XuPLEJA+Lx8ZiZixE7dKRxAXdtdK/i/issFyl G7l9J38O5V08DV829lWIm56ts49cCHHiqywVpkubTUaBdrzCulR//yCrHXzbGMzMCOagn/y8NqCH fC/MJFyuzyejyTjbf0Hl3Iswhgf55HGiY+7kAbG3uCVkCnOrvmSOthQwkdJJ/5HSNYuWzv0KaqJc OvCdJYOlofQLECzE3JdYzVR4Vkt3GXgugoqY3mRpx2J2NIKsjdsga6JRGmPGlDxOWO3tizHE8D8F 0aW+RuJypOsGpTqmGuGZi5c6zQmNg8rFuxvuUVT53qYMP9Ic9mZ6APBDT3Ono0bkxvoVkf44iz8P xtxZk++kRsfY4UY98C4iCCOyfE+7qhG9UGL4th+nSZR9d0alxLwuwQl3Pby04dvHI9fkwmzjUKVt yKonF/RhC64BKa/+u2XLTD2Bfsbtf2K9kEz2rBDRu5au89NrxPVk36EymBzySrrHRuZA/nE/eKmk Hx+j5OvUURA8TVfUkUHThurYVAMD2HHeYHB0p6cUuY+UmokIHRcD+ST1L1TtAV5a0gM96/+6bGBE FhCERAcJZQamQFYJByrHDqDTodThLOtJvoXIn9B4ifiINIVX+Ea0aB0oMRMAoCHix9MGJOGzC06/ MdLyY4N2n6/m65mjAJHWjnICaADk1SwjSWhFqypi6mf2xUJrVYJBGxiXg8/XyRhgexjKwx9gDAx1 COGEdn/MfWd5NuB3xmGRtDVdVoR1hL/MqESp9kLKOs+P5kcmnMc309B/2BG4BoflR5VJZ8lQRrnR m6XExrt6pPw7yyGHCkSMZgLCP5SH+NcscnYMbsNp7KFsQd70kNLplLoJyACGNF88a6VuOvHL/3ez MZsvgnw1C9M8upeopm2u2L03FhlGuDmFRudXEK3m/mV6a3I+rs5Tpfo6WQM1AJ8DVAvUF2NbJeub y1by6k/ZeLh6opRzAU0q6yg1tmgZIWP5kZnADHUDeiWEQJl5zyCFgSyICMCUldhZ7VQ8AEdhp4h+ K+luVGg8YnX2hRq3EbBr5kLRRyZpAaMr42GIDkm+3sEFJrSYm15snj6B2GfG5TQcH/dTwCuxLnGY 0Q1mGMZtM7QfeyTxnSxxFlej4KmvUn9i0i029KmIlEkyjrqUoJtlOdd3+l6fiPUnfBi54ljukbfb REHYAcjiNNibbz+pn3JDKJnAu33XfcMnFDjf4TQA+YzaChzY6wr4AWNmh/9Up9d7oxu58reUUnP9 9jq+qw== |
Misc
Discrete/voxel iterator over the volume between two spatial vectors, inclusive (WIP):
local function iter (a, i)
local x, y, r = a.x, a.y, a.r
local z
x = x + (i % r.x)
y = y + (math.floor(i/r.x) % r.y)
z = math.floor(i/r.x/r.y)
if z >= r.z then
return nil
end
z = a.z + z
i = i + 1
-- TODO: Unroll all the / and % out from here?
return i, vector.new(x, y, z)
end
function vipairs (v1, v2)
local v = vector.copy(v1)
v.r = vector.offset(vector.subtract(v2, v1), 1, 1, 1)
return iter, v, 0
end
-- usage examples:
for i, v in vipairs(vector.new(-1, -1, -1), vector.new(1, 1, 1)) do
-- do something at each of the 27 example coordinates
end
for i, v in vipairs(vector.new(-1, -1, -1), vector.new(1, 2, 3)) do
-- do something at each of the 60 example coordinates
end
Looking for a FOSS licensed alternative to highchartsgpt.
An example to try with that particular tool:
- Create chart with the following example data (unix timestamp and discrete stepped measurement) and moving averages (excluding over 3 minutes of 0); if a measurement interval in that exceeds three minutes, add synthetic value of 0 at 3 minutes after the latest measurement and 0. In case of duplicates, also add one millisecond to the value:
1710974308:72000 1710974422:72000 1710974479:66000 1710974479:66000 1710974483:72000 1710974603:72000 1710974652:60000 1710974653:60000 1710974654:48000 1710974656:60000 1710974657:66000 1710974658:72000 1710974783:72000 1710974828:60000 1710974828:60000 1710974831:54000 1710974834:60000 1710974835:72000 1710975013:0 1710975014:0 1710975018:24000 1710975019:48000 1710975020:72000 1710977201:0 1710977201:0 1710977205:24000 1710977206:48000 1710977207:72000 1710977322:72000 1710977380:66000 1710977380:66000 1710977381:60000 1710977385:66000 1710977386:72000 1710977502:72000
(sometimes triggers ratelimits in their public demo endpoints even with that little demo data, sometimes doesn't)